A Generalized Conjugate Gradient Method for the Numerical Solution of Elliptic Partial Differential Equations
نویسندگان
چکیده
We consider a generalized conjugate gradient method for solving sparse, symmetric, positive-definite systems of linear equations, principally those arising from the discretization of boundary value problems for elliptic partial differential equations. The method is based on splitting off from the original coefficient matrix a symmetric, positive-definiteonethat corresponds to a more easily solvable system of equations, and then accelerating the associated iteration using conjugate gradients. Optimality and convergence properties are presented, and the relation to other methods is discussed. Several splittings for which the method seems particularly effective are also discussed, and for some, numerical examples
منابع مشابه
Efficient Solution of Elliptic Partial Differential Equations via Effective Combination of Mesh Quality Metrics, Preconditioners, and Sparse Linear Solvers
In this paper, we study the effect the choice of mesh quality metric, preconditioner, and sparse linear solver have on the numerical solution of elliptic partial differential equations (PDEs). We smoothe meshes on several geometric domains using various quality metrics and solve the associated elliptic PDEs using the finite element method. The resulting linear systems are solved using various c...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملOperator Preconditioning in Hilbert Space
2010 1 Introduction The numerical solution of linear elliptic partial differential equations consists of two main steps: discretization and iteration, where generally some conjugate gradient method is used for solving the finite element discretization of the problem. However, when for elliptic problems the dis-cretization parameter tends to zero, the required number of iterations for a prescrib...
متن کاملApproximated solution of First order Fuzzy Differential Equations under generalized differentiability
In this research, a numerical method by piecewise approximated method for solving fuzzy differential equations is introduced. In this method, the solution by piecewise fuzzy polynomial is present. The base of this method is using fuzzy Taylor expansion on initial value of fuzzy differential equations. The existence, uniqueness and convergence of the approximate solution are investigated. To sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998